Thermal-Infrared Spectral Feature Analysis and Spectral Identification of Monzonite Using Feature-Oriented Principal Component Analysis

Author:

Xie BushengORCID,Mao Wenfei,Peng Boqi,Zhou Shengyu,Wu Lixin

Abstract

Rock spectral analysis is an important research field in hyperspectral remote sensing information processing. Compared with the spectra in the short-wave infrared and visible–near-infrared regions, the emittance spectrum of rocks in the thermal infrared (TIR) region is highly significant for identifying some major rock-forming minerals, including feldspar, biotite, pyroxene and hornblende. Even for the same rock type, slight differences in mineral composition generally result in varying spectral signatures, undoubtedly increasing the difficulty in discriminating rock types on the Earth’s surface via TIR spectroscopy. In this study, amounts of monzonite samples from different regions were collected in the central part of Hunan Province, China, and emission spectra at 8–14 μm were measured using a portable thermal infrared spectrometer. The experimental result illustrates 13 remarkable feature positions for all the monzonite samples from different geological environments. Furthermore, by combining the extracted features with the principal component analysis (PCA) method, feature-oriented PCA was applied to establish a model for identifying monzonite accurately and quickly without performing spectral library matching and spectral deconvolution. This study provides an important method for rock type identification in the TIR region that is helpful for the rock spectral analysis, geological mapping and pixel unmixing of remote sensing images.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Nature Science Foundation of Hunan

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3