Prediction of Biochar Yield and Specific Surface Area Based on Integrated Learning Algorithm

Author:

Zhou Xiaohu1,Liu Xiaochen12,Sun Linlin1,Jia Xinyu1,Tian Fei1,Liu Yueqin3,Wu Zhansheng1ORCID

Affiliation:

1. Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710048, China

2. Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an 710069, China

3. School of Life Science, Yan’an University, Yan’an 716000, China

Abstract

Biochar is a biomaterial obtained by pyrolysis with high porosity and high specific surface area (SSA), which is widely used in several fields. The yield of biochar has an important effect on production cost and utilization efficiency, while SSA plays a key role in adsorption, catalysis, and pollutant removal. The preparation of biochar materials with better SSA is currently one of the frontiers in this research field. However, traditional methods are time consuming and laborious, so this paper developed a machine learning model to predict and study the properties of biochar efficiently for engineering through cross-validation and hyper parameter tuning. This paper used 622 data samples to predict the yield and SSA of biochar and selected eXtreme Gradient Boosting (XGBoost) as the model due to its excellent performance in terms of performance (yield correlation coefficient R2 = 0.79 and SSA correlation coefficient R2 = 0.92) and analyzed it using Shapley Additive Explanation. Using the Pearson correlation coefficient matrix revealed the correlations between the input parameters and the biochar yield and SSA. Results showed the important features affecting biochar yield were temperature and biomass feedstock, while the important features affecting SSA were ash and retention time. The XGBoost model developed provides new application scenarios and ideas for predicting biochar yield and SSA in response to the characteristic input parameters of biochar.

Funder

National Natural Science Foundation of China

Key Research and Development Plan of Shaanxi Province

Shaanxi University Youth Science and Technology Innovation Team

Xi'an Association of Science and Technology Youth Talent Promotion Program Project

Shaanxi Province Qin Chuangyuan “Scientist + Engineer” Team

Xi’an Key Laboratory of Textile and Chemical Additives Performance Assessment Reward and Subsidy Project

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3