Machine Learning Enabled Performance Prediction Model for Massive-MIMO HetNet System

Author:

Bandopadhaya Shuvabrata,Samal Soumya RanjanORCID,Poulkov VladimirORCID

Abstract

To support upcoming novel applications, fifth generation (5G) and beyond 5G (B5G) wireless networks are being propelled to deploy an ultra-dense network with an ultra-high spectral efficiency using the combination of heterogeneous network (HetNet) solutions and massive Multiple Input Multiple Output (MIMO). As the deployment of massive MIMO HetNet systems involves a high capital expenditure, network service providers need a precise performance analysis before investment. The performance of such networks is limited because of presence of inter-cell and inter-tier interferences. The conventional analytic approach to model the performance of such networks is not trivial, as the performance is a stochastic function of many network parameters. This paper proposes a machine learning (ML) approach to predict the network performance of a massive MIMO HetNet system considering a multi-cell scenario. This paper considers a two-tier network in which the base stations of each tier are equipped with massive MIMO systems working in a sub 6GHz band. The coverage probability (CP) and area spectral efficiency (ASE) are considered to be the network performance metrics that quantify the reliability and achievable rate in the network, respectively. Here, an ML model is inferred to predict the numerical values of the performance metrics for an arbitrary network configuration. In the process of practical deployments of future networks, the use of this model could be very valuable.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning-Enabled Human Resource Analytics in Predicting Employee Performance;2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM);2024-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3