A Deep Learning Model for Fault Diagnosis with a Deep Neural Network and Feature Fusion on Multi-Channel Sensory Signals

Author:

Ye Qing,Liu Shaohu,Liu Changhua

Abstract

Collecting multi-channel sensory signals is a feasible way to enhance performance in the diagnosis of mechanical equipment. In this article, a deep learning method combined with feature fusion on multi-channel sensory signals is proposed. First, a deep neural network (DNN) made up of auto-encoders is adopted to adaptively learn representative features from sensory signal and approximate non-linear relation between symptoms and fault modes. Then, Locality Preserving Projection (LPP) is utilized in the fusion of features extracted from multi-channel sensory signals. Finally, a novel diagnostic model based on multiple DNNs (MDNNs) and softmax is constructed with the input of fused deep features. The proposed method is verified in intelligent failure recognition for automobile final drive to evaluate its performance. A set of contrastive analyses of several intelligent models based on the Back-Propagation Neural Network (BPNN), Support Vector Machine (SVM) and the proposed deep architecture with single sensory signal and multi-channel sensory signals is implemented. The proposed deep architecture of feature extraction and feature fusion on multi-channel sensory signals can effectively recognize the fault patterns of final drive with the best diagnostic accuracy of 95.84%. The results confirm that the proposed method is more robust and effective than other comparative methods in the contrastive experiments.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference61 articles.

1. Analysis of transformation countermeasures of automobile manufacturing enterprises from production type to service type;Fang;J. Chang’an Univ. (Nat. Sci. Ed.),2013

2. An On-line Vibration Monitoring System for Final Drive of Automobile;Yao;Noise Vib. Control,2017

3. Simultaneous Fault Diagnosis Method Based on Improved Sparse Bayesian Extreme Learning Machine;Ye;J. Southwest Jiaotong Univ.,2016

4. Classifier fusion of vibration and acoustic signals for fault diagnosis and classification of planetary gears based on Dempster–Shafer evidence theory

5. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3