Release Kinetics Model Fitting of Drugs with Different Structures from Viscose Fabric

Author:

Zhu Weiwei1ORCID,Long Jiajie1,Shi Meiwu1

Affiliation:

1. College of Textile and Clothing Engineering, Suzhou University, Suzhou 215127, China

Abstract

(1) Background: It is simpler and more environmentally friendly to use supercritical CO2 fluid technology to process skincare viscose fabrics. Therefore, it is significant to study the release properties of drug-loaded viscose fabrics to choose suitable skincare drugs. In this work, the release kinetics model fittings were investigated in order to clarify the release mechanism and provide a theoretical basis for processing skincare viscose fabrics with supercritical CO2 fluid. (2) Methods: Nine kinds of drugs with different substituent groups, different molecular weights, and different substitution positions were loaded onto viscose fabrics using supercritical CO2 fluid. Then, the drug-loaded viscose fabrics were placed in an ethanol medium, and the release curves were drawn. Finally, the release kinetics were fitted using zero-order release kinetics, the first-order kinetics model, the Higuchi model, and the Korsmeyer–Peppas model. (3) Results: The Korsmeyer–Peppas model was the best-fitting model for all the drugs. Drugs with different substituent groups were released via a non-Fickian diffusion mechanism. On the contrary, other drugs were released via a Fickian diffusion mechanism. (4) Conclusions: In view of the release kinetics, it was found that the viscose fabric can swell when a drug with a higher solubility parameter is loaded onto it using supercritical CO2 fluid, and the release rate is also slower.

Publisher

MDPI AG

Subject

General Materials Science

Reference34 articles.

1. A critical review of manufacturing processes used in regenerated cellulosic fibres: Viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell;Sayyed;Cellulose,2019

2. Montemor, M.F. (2016). Smart Composite Coatings and Membranes, Woodhead Publishing.

3. Fabrication of a multifunctional antibacterial Cotton-based fabric for personal cooling;Chen;Appl. Surf. Sci.,2023

4. Shishoo, R. (2005). Textiles in Sport, Woodhead Publishing.

5. Mathis, R., and Mehling, A. (2011). Handbook of Medical Textiles, Woodhead Publishing.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3