Electrically Tunable Defect-Mode Wavelengths in a Liquid-Crystal-in-Cavity Hybrid Structure in the Near-Infrared Range

Author:

Sung Guan-Fu1,Chiu Shun-Yi2,Chang Yi-Cheng3,Liou Yu-Chen4,Yeh Chin-Pin5,Lee Wei2ORCID

Affiliation:

1. College of Photonics, National Yang Ming Chiao Tung University, Guiren District, Tainan 711010, Taiwan

2. Institute of Imaging and Biomedical Photonics, College of Photonics, National Yang Ming Chiao Tung University, Guiren District, Tainan 711010, Taiwan

3. Institute of Lighting and Energy Photonics, College of Photonics, National Yang Ming Chiao Tung University, Guiren District, Tainan 711010, Taiwan

4. Institute of Photonic system, College of Photonics, National Yang Ming Chiao Tung University, Guiren District, Tainan 711010, Taiwan

5. Apogee Optocom Co., Ltd., Hsinshi District, Tainan 744094, Taiwan

Abstract

This work proposes a novel approach to developing a core component for a near-infrared (NIR) spectrometer with wavelength tunability, which is based on a liquid crystal (LC)-in-cavity structure as a hybrid photonic crystal (PC). By electrically altering the tilt angle of the LC molecules under applied voltage, the proposed PC/LC photonic structure consisting of an LC layer sandwiched between two multilayer films generates transmitted photons at specific wavelengths as defect modes within the photonic bandgap (PBG). The relationship between the number of defect-mode peaks and the cell thickness is investigated using a simulated approach based on the 4 × 4 Berreman numerical method. Furthermore, the defect-mode wavelength shifts driven by various applied voltages are studied experimentally. To minimize the power consumption of the optical module for spectrometric application, cells of different thicknesses are explored for the wavelength-tunability performance of the defect modes scanning through the entire free spectral ranges to the wavelengths of their next higher orders at null voltage. A 7.9 μm thick PC/LC cell is verified to attain the low operating voltage of merely 2.5 Vrms required to successfully cover the entire NIR spectral range between 1250 and 1650 nm. The proposed PBG structure is thus an excellent candidate for application in monochromator or spectrometer development.

Funder

Southern Taiwan Science Park Bureau, Taiwan

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3