Evaluation of Piezoresistive and Electrical Properties of Conductive Nanocomposite Based on Castor-Oil Polyurethane Filled with MWCNT and Carbon Black

Author:

Melo Diego S.12,Reis Idalci C.3,Queiroz Júlio C.3,Cena Cicero R.4ORCID,Nahime Bacus O.3,Malmonge José A.1,Silva Michael J.2

Affiliation:

1. Department of Physics and Chemistry, Faculty of Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil

2. Department of Energy Engineering, Faculty of Engineering and Science, São Paulo State University (UNESP), Rosana 19274-000, SP, Brazil

3. Science and Technology Goiano, Federal Institute of Education, Rio Verde 75901-970, GO, Brazil

4. Institute of Physics, Federal University of Federal do Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil

Abstract

Flexible films of a conductive polymer nanocomposite-based castor oil polyurethane (PUR), filled with different concentrations of carbon black (CB) nanoparticles or multiwall carbon nanotubes (MWCNTs), were obtained by a casting method. The piezoresistive, electrical, and dielectric properties of the PUR/MWCNT and PUR/CB composites were compared. The dc electrical conductivity of both PUR/MWCNT and PUR/CB nanocomposites exhibited strong dependences on the concentration of conducting nanofillers. Their percolation thresholds were 1.56 and 1.5 mass%, respectively. Above the threshold percolation level, the electrical conductivity value increased from 1.65 × 10−12 for the matrix PUR to 2.3 × 10−3 and 1.24 × 10−5 S/m for PUR/MWCNT and PUR/CB samples, respectively. Due to the better CB dispersion in the PUR matrix, the PUR/CB nanocomposite exhibited a lower percolation threshold value, corroborated by scanning electron microscopy images. The real part of the alternating conductivity of the nanocomposites was in accordance with Jonscher’s law, indicating that conduction occurred by hopping between states in the conducting nanofillers. The piezoresistive properties were investigated under tensile cycles. The nanocomposites exhibited piezoresistive responses and, thus, could be used as piezoresistive sensors.

Funder

Sao Paulo State Funding Agency

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3