Microstructural Considerations of a Multi-Pass Rolled Ti-Nb-Ta-Zr Alloy

Author:

Răducanu Doina1,Nocivin Anna2ORCID,Cojocaru Vasile Dănuț1ORCID,Șerban Nicolae1ORCID,Zărnescu-Ivan Nicoleta1ORCID,Irimescu Raluca Elena1,Gălbinașu Bogdan Mihai3ORCID

Affiliation:

1. Department of Metallic Materials Processing and Environmental Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania

2. Faculty of Mechanical, Industrial and Maritime Engineering, Ovidius University of Constanta, 900527 Constanța, Romania

3. Dental Medicine Faculty, University of Medicine and Pharmacy “Carol Davila” Bucharest, 020021 Bucharest, Romania

Abstract

The microstructural characteristic evolution was investigated during thermomechanical processing of Ti-29Nb-9Ta-10Zr (wt %) alloy, which consisted of, in a first stage, in a Multi-Pass Rolling with increasing thickness reduction of 20%, 40%, 60%, 80%, and 90%; in step two, the multi-pass rolled sample with the highest thickness reduction (90%) was subjected to a series of three variants of static short recrystallization and then to a final similar aging. The objective was to evaluate the microstructural features evolution during thermomechanical processing (phase’s nature, morphology, dimensions, and crystallographic characteristics) and to find the optimal heat treatment variant for refinement of the alloy granulation until ultrafine/nanometric level for a promising combination of mechanical properties. The microstructural features were investigated by X-ray diffraction and SEM techniques through which the presence of two phases was recorded: the β-Ti phase and the α″-Ti martensitic phase. The corresponding cell parameters, dimensions of the coherent crystallite and the micro-deformations at the crystalline network level for both recorded phases were determined. The majority β-Ti phase underwent a strong refinement during the Multi-Pass Rolling process until ultrafine/nano grain dimension (about 9.8 nm), with subsequent slow growing during recrystallization and aging treatments, hindered by the presence of sub-micron α″-Ti phase dispersed inside β-Ti grains. An analysis concerning the possible deformation mechanisms was performed.

Funder

Romanian National Authority for Scientific Research CCCDI–UEFISCDI

MDPI-discount vouchers

University POLITEHNICA of Bucharest

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3