Technological Processes for Increasing the Cavitation Erosion Resistance of Nimonic 80A Superalloys

Author:

Belin Cosmin1,Mitelea Ion1,Bordeașu Ilare2,Crăciunescu Corneliu Marius1,Uțu Ion-Dragoș1ORCID

Affiliation:

1. Department of Materials and Fabrication Engineering, Politehnica University Timisoara, Bulevardul Mihai Viteazul nr.1, 300222 Timisoara, Romania

2. Department of Mechanical Machines, Equipment and Transports, Politehnica University Timisoara, Bulevardul Mihai Viteazul nr.1, 300222 Timisoara, Romania

Abstract

Nickel-based superalloys are frequently used to manufacture the components that operate under cavitation erosion conditions, such as aircraft gas turbine construction, nuclear power systems, steam turbine power plants, and chemical and petrochemical industries. Their poor performance in terms of cavitation erosion leads to a significant reduction in service life. This paper compares four technological treatment methods to improve cavitation erosion resistance. The cavitation erosion experiments were carried out on a vibrating device with piezoceramic crystals in accordance with the prescriptions of the ASTM G32—2016 standard. The maximum depth of surface damage, the erosion rate, and the morphologies of the eroded surfaces during the cavitation erosion tests were characterized. The results indicate that the thermochemical plasma nitriding treatment can reduce mass losses and the erosion rate. The cavitation erosion resistance of the nitrided samples is approximately 2 times higher than that of the remelted TIG surfaces, approximately 2.4 times higher than that of the artificially aged hardened substrate, and 10.6 times higher than that of the solution heat-treated substrate. The improvement in cavitation erosion resistance for Nimonic 80A superalloy is attributed to the finishing of the surface microstructure, graining, and the presence of residual compressive stresses, factors that prevent crack initiation and propagation, thus blocking material removal during cavitation stresses.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3