Exploring the Piezoelectric Properties of Bismuth Ferrite Thin Films Using Piezoelectric Force Microscopy: A Case Study

Author:

Misiurev Denis1ORCID,Kaspar Pavel1,Sobola Dinara1,Papež Nikola1ORCID,H. Fawaeer Saleh2,Holcman Vladimír1

Affiliation:

1. Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 2848/8, 616 00 Brno, Czech Republic

2. CEITEC BUT, Brno University of Technology, 612 00 Brno, Czech Republic

Abstract

Over recent decades, the scientific community has managed to make great progress in the theoretical investigation and practical characterization of bismuth ferrite thin films. However, there is still much work to be completed in the field of magnetic property analysis. Under a normal operational temperature, the ferroelectric properties of bismuth ferrite could overcome the magnetic properties due to the robustness of ferroelectric alignment. Therefore, investigation of the ferroelectric domain structure is crucial for functionality of any potential devices. This paper reports deposition and analyzation of bismuth ferrite thin films by Piezoresponse Force Microscopy (PFM) and XPS methods, aiming to provide a characterization of deposited thin films. In this paper, thin films of 100 nm thick bismuth ferrite material were prepared by pulsed laser deposition on multilayer substrates Pt/Ti(TiO2)/Si. Our main purpose for the PFM investigation in this paper is to determine which magnetic pattern will be observed on Pt/Ti/Si and Pt/TiO2/Si multilayer substrates under certain deposition parameters by utilizing the PLD method and using samples of a deposited thickness of 100 nm. It was also important to determine how strong the measured piezoelectric response will be, considering parameters mentioned previously. By establishing a clear understanding of how prepared thin films react on various biases, we have provided a foundation for future research involving the formation of piezoelectric grains, thickness-dependent domain wall formations, and the effect of the substrate topology on the magnetic properties of bismuth ferrite films.

Funder

Internal Grant Agency of Brno University of Technology

MEYS Czech Republic

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3