Effects of Numerical Forcing on the Two-Time Correlation of Fluid Velocity Differences in Stationary Isotropic Turbulence

Author:

Dhariwal RohitORCID,Rani Sarma L.ORCID

Abstract

In direct numerical simulations (DNS) of homogeneous isotropic turbulence, numerical forcing is needed to achieve statistically stationary velocity fields. The Eulerian two-time correlation tensor of the fluid velocity difference field, Δu(r,t)=u(x+r,t)−u(x,t), characterizes the temporal evolution of turbulent eddies whose sizes scale with separation r=|r|. In this study, we investigate the effects of two spectral forcing schemes on the temporal decay of the Eulerian two-time correlation of fluid velocity differences ⟨Δu(r,t′)Δu(r,t)⟩. Accordingly, DNS of homogeneous isotropic turbulence were performed for two grid sizes, 1283 and 5123, corresponding to the Taylor micro-scale Reynolds numbers Reλ≈80 and 210, respectively. Statistical stationarity was achieved by employing deterministic and stochastic spectral forcing schemes. In the stochastic scheme, one needs to specify the time scale, Tf, of the Uhlenbeck–Ornstein (UO) processes that constitute the forcing. We considered four values of the UO time scale (Tf=TE/4,TE,2TE, and 4TE) for each Reλ, where TE is the large-eddy time scale obtained from the DNS run with deterministic forcing at the same Reλ. It is seen that the correlations ⟨Δu(r,t′)Δu(r,t)⟩ obtained from the deterministic-forcing DNS runs decay more slowly than those from stochastic-forcing DNS runs of all four Tf values. The slower decay of correlations in deterministic DNS runs is more pronounced at larger separations and for higher Reλ.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3