Spanwise-Discontinuous Grooves for Separation Delay and Drag Reduction of Bodies with Vortex Shedding

Author:

Pasqualetto ElenaORCID,Lunghi GianmarcoORCID,Mariotti AlessandroORCID,Salvetti Maria VittoriaORCID

Abstract

Suitably shaped grooves, placed transverse to the flow, can delay flow separation over curved surfaces. When grooves are fully extruded in the spanwise direction, they may reduce the drag of boat-tailed bodies with vortex shedding, but with the drawback of increasing the spanwise correlation of the vortex shedding. We investigate herein the effect of spanwise-discontinuous grooves through Large Eddy Simulations. A systematic analysis is carried out on the effect of the number, N, of grooves that are present for N equally long portions of the total spanwise length of the boat-tail. Discontinuous grooves further reduce the drag compared with the full-spanwise-extruded groove. Increasing N produces an improvement of the flow-control-device performance, whose maximum value is reached for N=3, corresponding to a spanwise extension of the groove roughly equal to the body crossflow dimension. Above this value, no further improvements are found. The maximum drag reduction is equal to 25.7% of the drag of the boat-tail without grooves and to 17.7% of the one of the boat-tail with the full-spanwise-extruded groove. The lowest drag value occurs for the least correlated vortex-shedding in the spanwise direction. The reduction in the correlation is mainly related to a flow separation line that is less regular in the spanwise direction.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3