Tsunami-Induced Bores Propagating over a Canal, Part II: Numerical Experiments Using the Standard k-ε Turbulence Model

Author:

Elsheikh NuriORCID,Azimi Amir H.,Nistor Ioan,Mohammadian AbdolmajidORCID

Abstract

This companion paper presents the results of a series of numerical experiments examining the effects of a mitigation canal on the hydrodynamics of a tsunami-like turbulent bore proceeding over a horizontal bed. The hydraulic bores were generated by a dam-break setup which employed impoundment depths of do = 0.20 m, 0.30 m, and 0.40 m. The bore propagated downstream of the impoundments in the flume and interacted with a canal with varying geometry located downstream. The bore then left the flume through a drain located further downstream of the canal. In this study, the effect of the canal depth on the specific momentum and specific energy of hydraulic bores passing over a rectangular canal is numerically studied. The canal width was kept constant, at w = 0.6 m, while the canal depths were varied as follows: d = 0.05 m, 0.10 m, and 0.15 m. The time history of mean flow energy during the bore’s passing over the mitigation canal indicates that the jet stream of the maximum mean flow energy is controlled by the canal depth. The time required to dissipate the jet stream of the maximum vorticity, the turbulent kinetic energy, and the energy dissipation rate all increased as the canal depth decreased. The effect of canal orientation on the bore hydrodynamics was also numerically investigated, and it was found that the impulsive momentum and specific energy reached the highest values for canal orientations of 45 and 60 degrees. For the same canal depth, the highest peak specific momentum occurred with the highest degree of canal orientation (θ = 60°).

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference53 articles.

1. The 26 December 2004 earthquake and tsunami-hydrodynamic forces on physical infrastructure in Thailand and Indonesia;Nistor;Proceedings of the Canadian Coastal Engineering Conference,2005

2. Experimental Modeling of Extreme Hydrodynamic Forces on Structural Models

3. Effect of building overtopping on induced loads during extreme hydrodynamic events

4. FEMAP646. Guidelines for design of structure for vertical evacuation from tsunamis,2012

5. ASCE 7-16. Minimum design loads and associated criteria for buildings and other structures;Am. Soc. Civ. Eng.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3