Numerical Investigation of 3D Flow Properties around Finite Emergent Vegetation by Using the Two-Phase Volume of Fluid (VOF) Modeling Technique

Author:

Amina ,Tanaka Norio

Abstract

This study predicts how the Free Surface Level (FSL) variations around finite length vegetation affect flow structure by using a numerical simulation. The volume of fluid (VOF) technique with the Reynolds stress model (RSM) was used for the simulation. Multizone Hexahedral meshing was adopted to accurately track the free surface level with minimum numerical diffusion at the water–air interface. After the validation, finite length emergent vegetation patches were selected based on the aspect ratio (AR = vegetation width-length ratio) under constant subcritical flow conditions for an inland tsunami flow. The results showed that the generation of large vortices was predominated in wider vegetation patches (AR > 1) due to the increase and decrease in the FSL at the front and back of the vegetation compared to longer vegetation patches (AR ≤ 1), as this offered more resistance against the approaching flow. The wider vegetation patches (AR > 1) are favorable in terms of generating a large area of low velocity compared to the longer vegetation patch (AR < 1) directly downstream of the vegetation patch. On the other hand, it has a negative impact on the adjacent downstream gap region, where a 14.3–34.9% increase in velocity was observed. The longer vegetation patches (AR < 1) generate optimal conditions within the vegetation region due to great velocity reduction. Moreover, in all the AR vegetation cases, the water turbulent intensity was maximum in the vegetation region compared to the adjacent gap region and air turbulent intensity above the FSL, suggesting strong air entrainment over this region. The results of this study are important in constructing vegetation layouts based on the AR of the vegetation for tsunami mitigation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3