The Effects of Compressibility on the Performance and Modal Structures of a Sweeping Jet Emitted from Various Scales of a Fluidic Oscillator

Author:

Portillo Daniel J.ORCID,Hoffman EugeneORCID,Garcia Matt,LaLonde Elijah,Combs Christopher,Hood R. LyleORCID

Abstract

Investigations of fluidic oscillators, or sweeping jet actuators, have primarily been conducted within the incompressible flow regime, which limits the accuracy of estimating fluidic oscillator performance for compressible flows. The objective of this study was to evaluate the effects of gas compressibility on the performance of a fluidic oscillator. A commonly used fluidic oscillator geometry (the Bray geometry) was scaled to five different sizes, 3D printed, and tested over a range of air flow rates. High-speed Schlieren images captured the sweeping jet exiting the fluidic oscillators, and custom MATLAB algorithms were used to calculate the oscillation frequencies and angles. A spectral proper orthogonal decomposition (SPOD) method was used to identify and compare the mode structures within the flow fields. All the results were compared using dimensionless parameters to observe performance trends. The results showed that the oscillation frequencies were directly proportional to the flow rate, while the oscillation angles were inversely proportional to the flow rate, regardless of scale size. The angular velocities were not proportional to the flow rate or scale size and exhibited maxima within the evaluated ranges. For all scale sizes, the mode structures were symmetric across the centerlines of the fluidic oscillators and extended further beyond the fluidic oscillators at higher flow rates. These results enable the prediction of fluidic oscillator performance, which can significantly improve the design process for an application where a fluidic oscillator may be used, such as aerospace applications, power generation, heat exchangers, or medical devices.

Funder

United States Department of Defense

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference35 articles.

1. Physical Fluid Dynamics;Tritton,2012

2. Oscillator and Shower Head for Use Therewith;Bauer;U.S. Patent,1971

3. Effects of Fluidic Oscillator Nozzle Angle on the Flowfield and Impingement Heat Transfer

4. Sweeping jet optimization studies;Melton;Proceedings of the 8th AIAA Flow Control Conference,2016

5. Experimental Investigation of Sweeping Jet Film Cooling in a Transonic Turbine Cascade

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3