Abstract
In many physical contexts, notably including deep-water waves, modulation instability in one space dimension is often studied by using the nonlinear Schrödinger equation. The principal solutions of interest are solitons and breathers which are adopted as models of wave packets. The Peregrine breather in particular is often invoked as a model of a rogue wave. In this paper, we add a linear growth term to the nonlinear Schrödinger equation to model the amplification of propagating wave groups. This is motivated by an application to wind-generated water waves, but this forced nonlinear Schrödinger equation potentially has much wider applicability. We describe a series of numerical simulations which in the absence of the forcing term would generate solitons and/or breathers. We find that overall the effect of the forcing term is to favour the generation of solitons with amplitudes growing at twice the linear growth rate over the generation of breathers.
Funder
Leverhulme Emeritus Fellowship
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献