Effect of Plasma Actuator on Velocity and Temperature Profiles of High Aspect Ratio Rectangular Jet

Author:

Pham Anh VietORCID,Inaba Kazuaki,Saito Miyuki,Sakai Masaharu

Abstract

The turbulence jet centerline velocity and temperature decay intensely along the centerline flow direction. Thus, improving it could benefit engineering applications, such as air conditioners. However, active flow control techniques with high-aspect-ratio jets, especially for controlling the temperature, have not been widely investigated. This paper presents the velocity and temperature performance of a high-aspect-ratio rectangular jet controlled by two dielectric barrier discharge plasma actuators located on the longer sides of the nozzle and controlled by high-voltage and high-frequency pulse-width modulation sinusoidal waves. The scanning method was used to cover 362 cases as combinations of working parameters (modular frequency vs. duty vs. phase difference) for the velocity and temperature performances of the jets. Results show that plasma actuators can control both velocity and temperature distribution with minor input power compared with the rectangular jet’s kinetic energy and heat flux. The velocity increased up to 4% and decreased to 11%, measured at the interest position where x/h = 70 on the centerline. There were a 5% increase and a 4% decrease compared to the temperature-based case. Distinctive velocity and temperature distributions were observed under noteworthy cases, indicating the potential of the actuator to create various flow features without installing new hardware on the flow.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3