Unsteady Flow Oscillations in a 3-D Ventilated Model Room with Convective Heat Transfer

Author:

Yao Jun,Yao Yufeng

Abstract

Improving indoor air quality and energy consumption is one of the high demands in the building sector. In this study, unsteady flow oscillations in a 3-D ventilated model room with convective heat transfer have been studied for three configurations of an empty room (case 1), a room with an unheated box (case 2) and a room with a heated box (case 3). Computational results are validated against experimental data of airflow velocity, temperature and turbulence kinetic energy. For each case, flow unsteadiness is presented by the time history of airflow velocity and temperature at prescribed monitor points and further analyzed using the Fast Fourier Transform technique. For case 1, the flow oscillation is irregular and less dependent on the monitor points. For case 2, the flow oscillation is still irregular but with increased frequency, possibly due to enhanced flow recirculation around the corners of the unheated box. For case 3, a dominant frequency exists, and thermal energy oscillating is higher than flow kinetic energy. Among the three cases, case 3 has the highest dominant frequency in a range of 4.3–4.6 Hz, but the kinetic energy is the lowest at 1.25 m2⁄s. The unsteady flow oscillation is likely due to a high Grashof number and corner flow recirculation for cases 1 and 2, and a combination effect of a high Grashof number, corner flow recirculation and thermal instability (induced by the formation and movement of the thermal plume) for case 3.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference21 articles.

1. Discomfort due to air velocities in spaces;Fanger;Proceedings of the Meeting of Commissions B1, B2, E1 of the IIR, 4,1977

2. Air-velocity fluctuations in the occupied zone of ventilated spaces;Thorshauge;ASHRAE Trans.,1982

3. Field measurements of characteristics of turbulent air flow in the occupied zone of ventilated spaces;Hanzawa;Proceedings of the CLIMA 2000 World Congress on Heating, Ventilating and Air-Conditioning, 4, Copenhagen, Denmark, 25–30 August 1985

4. Low turbulence natural convection in an air filled square cavity

5. Characteristic disturbance frequency in vertical natural convection flow

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3