Magnetohydrodynamics Solver for a Two-Phase Free Surface Flow Developed in OpenFOAM

Author:

Suponitsky Victoria,Khalzov Ivan V.,Avital Eldad J.ORCID

Abstract

A magnetohydrodynamics solver (“mhdCompressibleInterFoam”) has been developed for a compressible two-phase flow with a free surface by extending “compressibleInterFoam” solver within OpenFOAM suite. The primary goal is to develop a tool to simulate compression of magnetic fields in vacuum and simplified magnetized plasma targets by imploding rotating liquid metal liners in the context of a Magnetized Target Fusion (MTF) concept in pursuit by General Fusion Inc. At present, the solver is limited to axisymmetric problems and the magnetic field evolution is solved in terms of toroidal field component and poloidal flux functions. The solver has been validated and verified using a number of test cases for which analytical or other numerical solutions are provided. Those tests cases include: (i) compression of toroidal and poloidal magnetic fields in vacuum and cylindrical geometry, (ii) axisymmetric annular Hartmann flow, and (iii) compression of magnetized target initialized with a Grad–Shafranov equilibrium state in a cylindrical geometry. A methodology to incorporate conductive solid regions into simulation has also been developed. Capability of the code is demonstrated by simulating a complex case of compressing a magnetized target, which is injected during implosion of a rotating liquid metal liner with an initially soaked poloidal magnetic field. An application of the solver to simulate compression of a magnetized target in a geometry and parameters relevant to the Fusion Demonstration Plant (FDP) being developed by General Fusion Inc. is also demonstrated.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3