Effect of Geometric Configuration of the Impeller on the Performance of Liquivac Pump: Single Phase Flow (Water)

Author:

Meerakaviyad DeepakORCID,Keville Tony,Prakash Atma,Abdullah Sajid,Hamad FaikORCID

Abstract

Liquivac pumps, with their unique shaped twin start helical rotor, have found utility in various sectors but the major drawback limiting in their global exploitation is their low performance. This paper investigates the study of performance of the Liquivac pump produced by Tomlinson Hall Ltd. Experimental data was used to validate a numerical model developed in Ansys Fluent 20.2 for the Liquivac pump. Four different geometric models of the rotor were tested numerically to find the optimum design using blade number and pitch length as the criteria to achieve improved efficiency. The choice of turbulence model is an important factor in the most accurate prediction with computational fluid dynamics (CFD) simulation. Four different turbulence models were validated with experimental measurements. The realizable K-ε model gave the most accurate performance predictions with a relative deviation of 3.8%. So, the realizable K-ε model was employed for further parametric optimization of the rotor. The results indicate a reasonable improvement in the head and efficiency of the Liquivac pump with a new rotor geometry of four equidistant blades in the front, back and four flights with 30 mm pitch. This is attributed to the most favourable balance between the different losses and most guided and uniform flow inside the rotor channels.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3