Impact of the Dissipation on the Nonlinear Interactions and Turbulence of Gravity-Capillary Waves

Author:

Berhanu MichaelORCID

Abstract

Gravity-capillary waves at the water surface are an obvious example illustrating wave propagation in the laboratory, and also nonlinear wave phenomena such as wave interactions or wave turbulence. However, at high-enough frequencies or small scales (i.e., the frequencies typically above 4 Hz or wavelengths below 10 cm), the viscous dissipation cannot be neglected, which complicates experimental, theoretical, and numerical approaches. In this review, we first derive, from the fundamental principles, the features of the gravity-capillary waves. We then discuss the origin and the magnitude of the viscous wave. dissipation in the laboratory and under field conditions. We then show that the significant level of dissipation has important consequences on nonlinear effects involving waves. The nonlinearity level quantified by the wave steepness must be large enough to overcome the viscous dissipation. Specifically, using water as fluid in the field and in the laboratory, nonlinear wave interactions and wave turbulence occur most of the time in a non-weakly nonlinear regime, when the waves are in the capillary or gravity-capillary range.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference115 articles.

1. The Feynman Lectures on Physics, Volume I: Mainly Mechanics, Radiation, and Heat;Feynman,1964

2. Waves and Mean Flow;Bühler,2014

3. Wave interactions - the evolution of an idea

4. Wave Interactions and Fluid Flows;Craik,1986

5. Resonant Interactions Among Surface Water Waves

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3