Abstract
This work is about numerical simulations of vortex induced acoustic resonance in a duct, experimentally investigated by Welsh et al. Vortex shedding of low-speed flow over a flat plate excites an acoustic duct mode, leading to a lock-in of shedding and acoustic resonance frequency over a wide range of flow velocities. This study shows that a state-of-the-art compressible Navier–Stokes flow solver is able to capture the lock-in phenomenon. The focus is on the numerical parameters required to precisely recover the experimental results in terms of lock-in range and acoustic pressure levels. Complete and reliable physical data are thereby obtained, which can aid in developing a systematic understanding of the complex flow interactions. Furthermore, hysteresis behavior is discovered and numerically explored.
Funder
German Federal Ministry of Economic Affairs and Energy within the scope of the fifth call of the Federal Aviation Research Programme
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics