Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning

Author:

Vinuesa RicardoORCID,Lehmkuhl Oriol,Lozano-Durán Adrian,Rabault JeanORCID

Abstract

In this review, we summarize existing trends of flow control used to improve the aerodynamic efficiency of wings. We first discuss active methods to control turbulence, starting with flat-plate geometries and building towards the more complicated flow around wings. Then, we discuss active approaches to control separation, a crucial aspect towards achieving a high aerodynamic efficiency. Furthermore, we highlight methods relying on turbulence simulation, and discuss various levels of modeling. Finally, we thoroughly revise data-driven methods and their application to flow control, and focus on deep reinforcement learning (DRL). We conclude that this methodology has the potential to discover novel control strategies in complex turbulent flows of aerodynamic relevance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference128 articles.

1. Bouwer, J. (2022, January 03). Will Airline Hubs Recover from COVID-19?. Available online: https://www.mckinsey.com/industries/travel-logistics-and-transport-infrastructure/our-insights/will-airline-hubs-recover-from-covid-19#.

2. Liu, J., Qiao, P., Ding, J., Hankinson, L., Harriman, E.H., Schiller, E.M., Ramanauskaite, I., and Zhang, H. (2020). Will the aviation industry have a bright future after the COVID-19 outbreak? Evidence from Chinese airport shipping sector. J. Risk Financ. Manag., 13.

3. Flying into the future: Aviation emissions scenarios to 2050;Environ. Sci. Technol.,2010

4. Drag due to lift: Concepts for prediction and reduction;Annu. Rev. Fluid Mech.,2001

5. UN General Assembly (2015). Transforming our world: The 2030 Agenda for Sustainable Development. Resolut. A Res., 25, 1–35.

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3