Turbulent Non-Stationary Reactive Flow in a Cement Kiln

Author:

Talice MarcoORCID,Juretić Franjo,Lahaye DomenicoORCID

Abstract

The reduction of emissions from large industrial furnaces critically relies on insights gained from numerical models of turbulent non-premixed combustion. In the article Mitigating Thermal NOx by Changing the Secondary Air Injection Channel: A Case Study in the Cement Industry, the authors present the use of the open-source OpenFoam software environment for the modeling of the combustion of Dutch natural gas in a cement kiln operated by our industrial partner. In this paper, various model enhancements are discussed. The steady-state Reynolds-Averaged Navier-Stokes formulation is replaced by an unsteady variant to capture the time variation of the averaged quantities. The infinitely fast eddy-dissipation combustion model is exchanged with the eddy-dissipation concept for combustion to account for the finite-rate chemistry of the combustion reactions. The injection of the gaseous fuel through the nozzles occurs at such a high velocity that a comprehensive flow formulation is required. Unlike in Mitigating Thermal NOx by Changing the Secondary Air Injection Channel: A Case Study in the Cement Industry, wave transmissive boundary conditions are imposed to avoid spurious reflections from the outlet patch. These model enhancements result in stable convergence of the time-stepping iteration. This in turn increases the resolution of the flow, combustion, and radiative heat transfer in the kiln. This resolution allows for a more accurate assessment of the thermal NO-formation in the kiln. Results of a test case of academic interest are presented. In this test case, the combustion air is injected at a low-mass flow rate. Numerical results show that the flow in the vicinity of the hot end of the kiln is unsteady. A vortex intermittently transports a fraction of methane into the air stream and a spurious reaction front is formed. This front causes a transient peak in the top wall temperature. The simulated combustion process is fuel-rich. All the oxygen is depleted after traveling a few diameters into the kiln. The thermal nitric oxide is formed near the burner and diluted before reaching the outlet. At the outlet, the simulated thermal NO concentration is equal to 1 ppm. The model is shown to be sufficiently mature to capture a more realistic mass inflow rate in the next stage of the work.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3