Mathematical Modeling and Pilot Test Validation of Nanoparticles Injection in Heavy Hydrocarbon Reservoirs

Author:

Valencia Juan D.,Mejía Juan M.ORCID,Icardi MatteoORCID,Zabala RichardORCID

Abstract

Heavy-oil mobility in reservoir rocks can be improved, using nanotechnology, by reducing the viscosity of the oil and improving the rock wettability to a water-wet condition. Previous pilot studies in Colombian heavy oil fields reported that nanoparticles dispersed in an oleic carrier fluid (diesel) increased oil production rates between 120–150% higher than before the interventions. However, to optimally deploy a massive nanofluid intervention campaign in heavy oil fields, it is valuable to implement simulation tools that can help to understand the role of operational parameters, to design the operations and to monitor the performance. The simulator must account for nanoparticle transport, transfer, and retention dynamics, as well as their impact on viscosity reduction and wettability restoration. In this paper, we developed and solved, numerically, a 3D mathematical model describing the multiphase flow and interaction of the nanoparticles with oil, brine, and rock surface, leading to viscosity reduction and wettability restoration. The model is based on a multiphase pseudo-compositional formulation, coupled with mass balance equations, of nanoparticles dispersed in water, nanoparticles dispersed in oil, and nanoparticles retained on the rock surface. We simulated a pilot test study of a nanofluid stimulation done in a Colombian heavy oil field. The injection, soaking, and production stages were simulated using a 3D single-well formulation of the mathematical model. The comparison of simulation results with the pilot test results shows that the model reproduced the field observations before and after the stimulation. Simulations showed that viscosity reduction during the post-stimulation period is strongly related to the detachment rate of nanoparticles. Simulation indicates that the recovery mechanism of the nanofluid stimulation is initially governed by viscosity reduction and wettability alteration. At latter times, wettability alteration is the main recovery mechanism. The nanoparticles transferred to the residual water promote the wettability alteration to a water wet condition. The model can be used to design field deployments of nanofluid interventions in heavy oil reservoirs.

Funder

Agencia Nacional de Hidrocarburos

Royal Academy of Engineering

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3