Wind Turbine Blade Design Optimization for Reduced LCoE, Focusing on Design-Driving Loads Due to Storm Conditions

Author:

Serafeim GiannisORCID,Manolas DimitrisORCID,Riziotis VasilisORCID,Chaviaropoulos Panagiotis

Abstract

Design modifications of the blade inner structure, targeted at reducing design-driving extreme loads due to storm conditions, are assessed in the present paper. Under survival wind speeds, the lack of sufficient aerodynamic damping in the edgewise direction is responsible for excessive stall-induced vibrations that usually drive wind turbine blade design loads. The modifications considered in the work are (i) a non-symmetric increase in the thickness of the uniaxial and tri-axial material on the suction and pressure side of the blade sections, (ii) a shift in the spar caps in opposite directions and (iii) the ply-angle re-orientation of the laminates on the spar caps. The first two design interventions aim at increasing the damping of the low-damped edgewise modes in the idling rotor, while the third aims at reducing the fatigue and ultimate loads in normal operation. The design parameters in the problem are determined on the basis of a multidisciplinary optimization (MDAO) process, which minimizes the levelized cost of energy (LCoE). The in-house integrated optimization tool employed in the present study combines: (i) a servo-aero-elastic analysis tool for calculating ultimate loads and power yield, (ii) a cross-sectional analysis tool for obtaining structural properties and stress distributions in the modified blades and (iii) a cost model of the overall wind turbine to evaluate the LCoE.

Funder

Hellenic Foundation for Research & Innovation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3