Analysis of Tip Clearance Effect on the Transportation Characteristics of a Multiphase Rotodynamic Pump Based on the Non-Uniform Bubble Model

Author:

Sun WeihuaORCID,Yu ZhiyiORCID,Zhang KeORCID,Liu ZhengORCID

Abstract

The multiphase rotodynamic pump is widely used in petroleum and gas exploitation, and blade tip clearance may cause flow instability and performance deterioration. In the present work, the influence of tip clearance on the transportation characteristic in a multiphase rotodynamic pump is investigated based on the non-uniform bubble model, in which the bubbles’ coalescence and break-up are considered. The influence mechanism of tip clearance on the energy performance is revealed. The results show that the leakage flow rate increases linearly with the increase in tip clearance, but variation in pump energy performance shows the opposite trend. In addition, a larger tip clearance results in a sharply decreased pressure increment in the impeller, while in the guide vane, the increment is raised slightly. For the 0 mm tip clearance condition, a positive vortex (relative to the impeller rotation direction) is observed in the impeller passage. However, the opposite leakage vortex is also found in the region near the tip clearance when the tip clearance is considered, and the vortex strength increases for a larger tip clearance.

Funder

Beijing Municipal Natural Science Foundation

Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3