Frequency Specificity of Liquid-Fountain Swinging with Mist Generation: Effects of Ultrasonic Irradiation Angle

Author:

Wang XiaoluORCID,Tsuchiya Katsumi

Abstract

Atomization of liquid into the air attained through submerged ultrasound irradiation will involve the formation of liquid fountain, which exhibits a sequence of oscillating and/or intermittent characteristics/events: its vertical/axial growth and breakup; its lateral “compound swinging”; and its associated dynamics of mist formation and spreading. This study attempts to provide a mechanistic view of ultrasonic atomization (UsA) process in terms of the swinging periodicity of water fountain and to specifically examine the influence of ultrasonic irradiation (i.e., transducer installation) angle on the liquid-fountain oscillations with mist generated intermittently. Through high-speed visualization, it was qualitatively found that as the extent of tilt (from the vertical direction) in the irradiation angle was increased, the degree of occurrence of mist generation and the amount of identifiable mist being generated tended to decrease. This trend was associated with reductions in both the growth rate and breakup frequency of the fountain on the tilt. It was further found, through the analysis of time variation in the resulting angle of liquid-fountain inclination, that the swinging fountain fluctuated periodically in an asymmetric manner and its periodicity could be fairly predicted based on a proposed simple “pendulum” model. An optimum value of the transducer installation angle was observed and judged to be 2° from the viewpoint of effective mist generation as well as fluid dynamic stability of the UsA liquid fountain.

Funder

The Harris Science Research Institute of Doshisha University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3