Abstract
In this work, for the first time, the influence of scaling up the process of titanium dioxide nanotube (TiO2NT) synthesis on the photoelectrochemical properties of TiO2 nanotubes is presented. Titanium dioxide nanotubes were obtained on substrates of various sizes: 2 × 2, 4 × 4, 5 × 5, 6 × 6, and 8 × 8 cm2. The electrode material was characterized using scanning electron microscopy as well as Raman and UV–vis spectroscopy in order to investigate their morphology, crystallinity, and absorbance ability, respectively. The obtained electrodes were used as photoanodes for the photoelectrochemical water splitting. The surface analysis was performed, and photocurrent values were determined depending on their place on the sample. Interestingly, the values of the obtained photocurrent densities in the center of each sample were similar and were about 80 µA·cm2. The results of our work show evidence of a significant contribution to wider applications of materials based on TiO2 nanotubes not only in photoelectrochemistry but also in medicine, supercapacitors, and sensors.
Funder
Narodowe Centrum Badań i Rozwoju
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献