Particle Size Measurement Using Dynamic Light Scattering at Ultra-Low Concentration Accounting for Particle Number Fluctuations

Author:

Wang MengjieORCID,Shen Jin,Thomas John C.,Mu Tongtong,Liu Wei,Wang Yajing,Pan Jinfeng,Wang Qin,Liu Kaishi

Abstract

Dynamic light scattering (DLS) is a popular method of particle size measurement, but at ultra-low particle concentrations, the occurrence of number concentration fluctuations limits the use of the technique. Number fluctuations add a non-Gaussian term to the scattered light intensity autocorrelation function (ACF). This leads to an inaccurate particle size distribution (PSD) being recovered if the normal DLS analysis model is used. We propose two methods for inverting the DLS data and recovering the PSDs when number fluctuations are apparent. One is to directly establish the relationship between the non-Gaussian ACF and the PSD by the kernel function reconstruction (KFR) method while including the non-Gaussian term to recover the PSD. The other is to remove the effect of the non-Gaussian term in the ACF by the baseline reset (BR) method. By including the number fluctuation term, the ideal recovered PSD can be obtained from the simulated data, but this will not happen in the experimental measurement data. This is because the measured intensity ACF contains more noise than the simulated ACF at ultra-low concentration. In particular, the baseline noise at the tail of long delay time of ACF overwhelms the number fluctuation term, making it difficult to recover reliable PSD data. Resetting the baseline can effectively remove the digital fluctuation term in ACF, which is also a feasible method to improve PSD recovery under ultra-low concentration. However, increasing noise at ultra-low concentrations can lead to errors in determining an effective baseline. This greatly reduces the accuracy of inversion results. Results from simulated and measured ACF data show that, for both methods, noise on the ACF limits reliable PSD recovery.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Key Technology Research and Development Program of Shandong

Shandong University of Technology and Zibo City Integration Development Project

Publisher

MDPI AG

Subject

General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Circulating extracellular vesicles in Systemic Lupus Erythematosus: physicochemical properties and phenotype;Lupus Science & Medicine;2024-08

2. Invitro inhibition of Daboia russelii (Shaw & Nodder) venom with alginic acid-based silver nanoparticles;Indian Journal of Experimental Biology;2024-07-09

3. Heterodyne dynamic light scattering for the characterization of particle dispersions;Applied Optics;2023-10-13

4. Characterizing the Performance of a Resonance-Based MEMS Particle Sensor with Glass Beads;International Journal of Precision Engineering and Manufacturing-Green Technology;2023-09-18

5. The Effect of Terahertz Scattering on Loss Coefficient in Granular Compacts;2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz);2023-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3