Microstructural, Mechanical and Radiological Characterization of Mortars Made with Granite Sand

Author:

Puertas FranciscaORCID,Suárez-Navarro José AntonioORCID,Gil-Maroto Alfredo,Moreno de los Reyes Ana María,Gascó Catalina,Pachón Alicia,Alonso María del MarORCID

Abstract

The study reported the effect of granite sand on strength and microstructural developments in mortars prepare from OPC with a high coal fly ash (FA) content or from hybrid alkaline cements. The radiological behaviour of the resulting mortars was compared to materials prepared with siliceous sand (with particles sizes of <2 mm) and the relationship between such radiological findings and mortar microstructure and strength was explored. A new method for determining natural radionuclides and their activity concentration Index (ACI) on cement mortars (specifically to solid 5-cm cubic specimens) was applied and validated. The microstructural changes associated in mortars have no effect on mortar radiological content measurements. The mortars with granite sand exhibited very high ACI > 0.96, which would ultimately limit their use. A conclusion of interest is that where information is at hand on the starting materials (OPC, FA, sand, admixtures), their proportions in the mortar and the mixing liquid content (water or alkaline activators) their radiological content is accurately predicted. The inference is that a mortar’s radiological content and ACI can be known prior to mixing, providing a criterion for determining its viability. That in turn lowers environmental risks and the health hazards for people in contact with such materials.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3