Abstract
The reuse of waste in civil construction brings environmental and economic benefits. However, for these to be used in concrete, it is necessary a previous evaluation of their physical and chemical characteristics. Thus, this study aimed to characterize and analyze the waste foundry exhaust sand (WFES) for use in self-compacting concrete (SCC). Foundry exhaust sand originates from the manufacturing process of sand molds and during demolding of metal parts. It is a fine sand rich in silica in the form of quartz collected by baghouse filter. Characterization of WFES was conducted through laser granulometry, scanning electron microscopy (SEM) in the energy dispersive spectroscopy (EDS) mode, X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG) and derivative thermogravimetry (DTG) techniques. The waste was classified as non-hazardous and non-inert, with physical and chemical properties suitable for use in SCC composition, as fine aggregate or mineral addition. Five mixtures of SCC were developed, in order to determine the waste influence in both fresh and hardened concrete. The properties in the fresh state were reached. There was an increase in compressive strength and sulfate resistance, a decrease in water absorption of self-compacting concrete by incorporating WFES as 30% replacement.
Subject
General Materials Science
Reference70 articles.
1. Ciência e Engenharia de Materiais: Uma Introdução;Callister,2008
2. Aplicação de resíduos na fabricação de concreto: como técnicas analíticas de caracterização podem auxiliar na escolha preliminar do material mais adequado?
3. Self-Compacting Concrete
4. Specification and Guidelines for Self-Compacting Concrete;Eur. Fed. Natl. Assoc. Represent. Prod. Appl. Spec. Build. Prod. Concr.,2002
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献