Pilot Demonstration of Hot Sheet Metal Forming Using 3D Printed Dies

Author:

Pujante Jaume,González Borja,Garcia-Llamas Eduard

Abstract

Since the popularization of press hardening in the early noughties, die and tooling systems have experienced considerable advances, with tool refrigeration as an important focus. However, it is still complicated to obtain homogeneous cooling and avoid hot spot issues in complex geometries. Additive Manufacturing allows designing cavities inside the material volume with little limitation in terms of channel intersection or bore entering and exit points. In this sense, this technology is a natural fit for obtaining surface-conforming cooling channels: an attractive prospect for refrigerated tools. This work describes a pilot experience in 3D-printed press hardening tools, comparing the performance of additive manufactured Maraging steel 1.2709 to conventional wrought hot work tool steel H13 on two different metrics: durability and thermal performance. For the first, wear studies were performed in a controlled pilot plant environment after 800 hot stamping strokes in an omega tool configuration. On the second, a demonstrator tool based on a commercial tool with hot spot issues, was produced by 3D printing including surface-conformal cooling channels. This tool was then used in a pilot press hardening line, in which tool temperature was analyzed and compared to an equivalent tool produced by conventional means. Results show that the Additive Manufacturing technologies can be successfully applied to the production of press hardening dies, particularly in intricate geometries where new cooling channel design strategies offer a solution for hot spots and inhomogeneous thermal loads.

Funder

Centro para el Desarrollo Tecnológico Industrial

Publisher

MDPI AG

Subject

General Materials Science

Reference23 articles.

1. Investigation of the thermo-mechanical properties of hot stamping steels

2. Chapter 7: Hot stamping;Nagathan,2012

3. Sheet metal forming at elevated temperatures

4. Tool steels for hot stamping of high strength automotive body parts;Escher;Int. Conf. Stone Concr. Mach.,2015

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3