Experimental Determination of the Coefficient of Restitution for Selected Modern Hybrid Composites

Author:

Skórski Witold Wojciech,Obszański Marcin,Zawisza MaciejORCID

Abstract

Composite materials (fiber reinforced plastics, FRPs) are successfully utilized in the production of various mechanical devices, including land vehicles, marine vessels, and aircrafts. They are primarily used for the production of body parts and hulls. Due to their importance, certain requirements relating to the mechanical properties of the materials used must be met for such applications. One aspect of the passive safety of vehicles is the effects of a possible collision with another object. The behavior of the structure in such a case can be determined based on the coefficient of restitution, which is a measure of energy dissipation after an impact. This paper presents the results of measuring the value of the coefficient of restitution for the selected composite materials, utilizing various reinforcement materials including different types of fibers and wooden veneer. The selected materials included glass, carbon, Kevlar fibers, and veneer from exotic wood in an epoxy resin matrix. The tested samples were made using various methods in order to understand the influence of the technology on the value of the coefficient. The authors determined the coefficient values utilizing two methods based on the measurement of two different physical quantities. In the first case, the height of the rebound of the ram was measured using a fast digital camera; in the second case, the time between successive rebounds of the tool was measured, determined based on the signal from the acceleration sensor. The authors compared the results of the coefficient values obtained using these methods and examined the relationship between the rebound energy and the value of the coefficient of restitution. The results have been discussed, and some conclusions have been made. Among other things, it seems that both methods of measurement are interchangeable with regard to lower impact velocities corresponding to lower heights (up to 300 mm) of the drop of the ram used in the tests.

Funder

Narodowym Centrum Nauki

Publisher

MDPI AG

Subject

General Materials Science

Reference19 articles.

1. Numerical Modelling of Functionally Graded Composite Microstructure in Terms of Their Homogenization;Miedzińska;Compos. Theory Pract.,2017

2. Comprehensive composite materials

3. A framework for long-term durability predictions of polymeric composites;Tuttle,1996

4. Debonding and pull-out processes in fibrous composites

5. Large scale fiber bridging in mode I intralaminar fracture. An embedded cell approach

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3