Aggregate Formation of Boron-Containing Molecules in Thermal Vacuum Deposited Films

Author:

Navozenko Oleksandr,Yashchuk Valeriy,Kachkovsky Oleksiy,Gudeika DaliusORCID,Butkute Rita,Slominskii Yuriy,Azovskyi Volodymyr

Abstract

The spectral properties of new boron-containing dyes were studied. One-component (pure dyes) and composite “Alq3+dye” thin films were fabricated using the thermal vacuum deposition method. The positions of the transmission spectra maxima in a one-component film are different for different film thicknesses. The best correlation of the maxima positions of the dye transmission spectra in solid and liquid solutions was observed for thicknesses of films close to a few (up to 10) monolayers. On the other hand, the absorption spectra maxima positions of one-component dye films (upper 10 nm) and composite films with high concentration, did not match the corresponding positions of absorption spectra maxima recorded in solutions. Comparison of the absorption spectra in one-component dye films and in solutions indicates the presence of both monomers and their aggregates in one-component films (contrary to solutions where such processes of aggregation do not take place, even at very high concentrations). Simultaneously with aggregation manifestation in the absorption spectra, the intensity of fluorescence of one-component dye films dramatically decreases. A quantum chemical simulation of the possible relative arrangement of two dye molecules indicates that the most possible of the simplest types of aggregates are physical dimers. Films of practical importance (due to efficient energy transfer from host to guest molecules when all singlet excitons are captured) possess a high quantum yield of fluorescence when reaching an impurity concentration of a few percent (aggregation does not take place yet).

Funder

Ministry of Education and Science of Ukraine

Lietuvos Mokslo Taryba

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3