Software-Defined Heterogeneous Vehicular Networking: The Architectural Design and Open Challenges

Author:

Mahmood Adnan,Zhang Wei,Sheng Quan

Abstract

The promising advancements in the telecommunications and automotive sectors over the years have empowered drivers with highly innovative communication and sensing capabilities, in turn paving the way for the next-generation connected and autonomous vehicles. Today, vehicles communicate wirelessly with other vehicles and vulnerable pedestrians in their immediate vicinity to share timely safety-critical information primarily for collision mitigation. Furthermore, vehicles connect with the traffic management entities via their supporting network infrastructure to become more aware of any potential hazards on the roads and for guidance pertinent to their current and anticipated speeds and travelling course to ensure more efficient traffic flows. Therefore, a secure and low-latency communication is highly indispensable in order to meet the stringent performance requirements of such safety-critical vehicular applications. However, the heterogeneity of diverse radio access technologies and inflexibility in their deployment results in network fragmentation and inefficient resource utilization, and these, therefore, act as bottlenecks in realizing the aims for a highly efficient vehicular networking architecture. In order to overcome such sorts of bottlenecks, this article brings forth the current state-of-the-art in the context of intelligent transportation systems (ITS) and subsequently proposes a software-defined heterogeneous vehicular networking (SDHVNet) architecture for ensuring a highly agile networking infrastructure to ensure rapid network innovation on-demand. Finally, a number of potential architectural challenges and their probable solutions are discussed.

Funder

Government of the Commonwealth of Australia's International Research Training Program

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference41 articles.

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3