Author:
Mihailescu Radu-Casian,Kyriakou Georgios,Papangelis Angelos
Abstract
In this paper we address the problem of automatic sensor composition for servicing human-interpretable high-level tasks. To this end, we introduce multi-level distributed intelligent virtual sensors (multi-level DIVS) as an overlay framework for a given mesh of physical and/or virtual sensors already deployed in the environment. The goal for multi-level DIVS is two-fold: (i) to provide a convenient way for the user to specify high-level sensing tasks; (ii) to construct the computational graph that provides the correct output given a specific sensing task. For (i) we resort to a conversational user interface, which is an intuitive and user-friendly manner in which the user can express the sensing problem, i.e., natural language queries, while for (ii) we propose a deep learning approach that establishes the correspondence between the natural language queries and their virtual sensor representation. Finally, we evaluate and demonstrate the feasibility of our approach in the context of a smart city setup.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献