Risk Index Method–A Tool for Sustainable, Holistic Building Fire Strategies

Author:

Brzezińska DorotaORCID,Bryant Paul

Abstract

Modern fire safety engineering seeks to ensure buildings are safe from fire by applying optimum levels of fire safety and protection resources without the need to overprotect. Similarly, the principles of sustainability aim to ensure resources are suitably applied to meet social, economic, and environmental objectives. However, there is a mismatch between the actual application of fire safety and the sustainability objectives for buildings, typically caused by the highly prescriptive historical approaches still largely adopted and legislated for in many countries. One solution that is increasingly adopted is the more flexible, “performance-based” fire engineering approach that bases fire safety and protection provisions on the development of key performance objectives, some of which could be influenced by sustainability engineering propositions for buildings, but very often this does not appear to be enough. The proposed new concept prompts separate assessment and scoring of the eight most important fire safety factors, allowing for calculation of the fire strategy risk index (FSRI). By comparing the FSRI of the actual submitted strategy against the baseline strategy, enforcement agencies or other interested stakeholders will have a methodology to determine optimal fire safety solutions for buildings.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference47 articles.

1. Collins English Dictionary Onlinehttps://www.collinsdictionary.com

2. Sustainable Fire Protection: Charting a New Coursehttps://www.firesafetysearch.com/sustainable-fire-protection/

3. Towns as Safety Organizational Fields: An Institutional Framework in Times of Emergency

4. BS 5588-1, 1990, Fire Precautions in the Design, Construction and Use of Buildings. Code of Practice for Residential Buildings (Withdrawn),1990

5. SFPE Engineering Guide to Performance-Based Fire Protection,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3