Comparative Performance of Machine Learning Algorithms in the Prediction of Indoor Daylight Illuminances

Author:

Ngarambe Jack,Irakoze Amina,Yun Geun YoungORCID,Kim Gon

Abstract

The performance of machine learning (ML) algorithms depends on the nature of the problem at hand. ML-based modeling, therefore, should employ suitable algorithms where optimum results are desired. The purpose of the current study was to explore the potential applications of ML algorithms in modeling daylight in indoor spaces and ultimately identify the optimum algorithm. We thus developed and compared the performance of four common ML algorithms: generalized linear models, deep neural networks, random forest, and gradient boosting models in predicting the distribution of indoor daylight illuminances. We found that deep neural networks, which showed a determination of coefficient (R2) of 0.99, outperformed the other algorithms. Additionally, we explored the use of long short-term memory to forecast the distribution of daylight at a particular future time. Our results show that long short-term memory is accurate and reliable (R2 = 0.92). Our findings provide a basis for discussions on ML algorithms’ use in modeling daylight in indoor spaces, which may ultimately result in efficient tools for estimating daylight performance in the primary stages of building design and daylight control schemes for energy efficiency.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3