Abstract
Autogenous healing is mainly produced by continuing hydration or carbonation. The aim of this research is to quantify the crack closing produced by autogenous healing for early-age concrete. This healing was evaluated for two crack size levels, 0.1 mm and 0.4 mm, under three healing conditions: water immersion, a humidity chamber, and wet/dry cycles. Crack closing was evaluated after 7, 14, 28 and 42 days under healing conditions. The internal status of the cracks was verified visually and using phenolphthalein. The results show that specimens stored in the humidity chamber did not experience healing, while specimens under wet/dry cycles and water immersion achieved the complete closing of small-sized cracks (under 0.15 mm). Autogenous healing showed higher speed under wet/dry cycles but higher final efficiency under water immersion. However, the inspection of the interior of the specimens showed that self-closing occurred mostly on the surface, and carbonation in the crack faces was only noticed very near the specimen’s surface. Additionally, this study proposes a preliminary strategy to model autogenous healing in concrete in terms of crack closing.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献