Alternate Causes for Pathogenesis of Exfoliation Glaucoma, a Multifactorial Elastotic Disorder: A Literature Review

Author:

Chakraborty MunmunORCID,Rao Aparna

Abstract

Exfoliation glaucoma (XFG) is the most recognizable form of secondary open-angle glaucoma associated with a high risk of blindness. This disease is characterized by white flaky granular deposits in the anterior chamber that leads to the elevation of intraocular pressure (IOP) and subsequent glaucomatous optic nerve damage. Conventionally, XFG is known to respond poorly to medical therapy, and surgical intervention is the only management option in most cases. Various genetic and nongenetic factors are known to be linked to the development of XFG. Despite decades of research on the genetic factors in exfoliation syndrome (XFS) by study groups and global consortia involving different ethnic populations, the pathogenesis of XFS and the mechanism of onset of glaucoma still remains an unsolved mystery. The key lies in understanding how the function of a gene (or set of genes) is altered by environmental triggers, along with other molecular events that underlie the key disease attributes, namely, oxidative stress and the disruption of the blood–aqueous barrier (BAB). It remains a challenge to evolve a theory encompassing all factions of molecular events occurring independently or parallelly that determine the disease manifestation (phenotype) or the stage of the disease in the eye (or in any tissue) in exfoliation. Our enhanced understanding of the underlying molecular pathophysiology of XFG, beyond the known genes or polymorphisms involved in the disease, will lead to improved diagnosis and management and the ability to recognize how the environment influences these key events that lead to the disease phenotype or disease progression. This review summarizes the recent observations and discoveries of four key factors that may hold the answers to the non-lysyl oxidase-like 1 (LOXL1) mechanisms behind XFG pathogenesis, namely, the epigenetic factor miRNA, disordered autophagy along with the potential involvement of mitochondrial mutations, and a compromised aqueous–blood barrier.

Funder

Wellcome Trust/DBT India Alliance

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3