Positive Energy Building Definition with the Framework, Elements and Challenges of the Concept

Author:

Ala-Juusela Mia,Rehman Hassam urORCID,Hukkalainen MariORCID,Reda Francesco

Abstract

Buildings account for 36% of the final energy demand and 39% of CO2 emissions worldwide. Targets for increasing the energy efficiency of buildings and reducing building related emissions is an important part of the energy policy to reach the Paris agreement within the United Nations Framework Convention on Climate Change. While nearly zero energy buildings are the new norm in the EU, the research is advancing towards positive energy buildings, which contribute to the surrounding community by providing emission-free energy. This paper suggests a definition for positive energy building and presents the framework, elements, and challenges of the concept. In a positive energy building, the annual renewable energy production in the building site exceeds the energy demand of the building. This increases two-way interactions with energy grids, requiring a broader approach compared to zero energy buildings. The role of energy flexibility grows when the share of fluctuating renewable energy increases. The presented framework is designed with balancing two important perspectives: technical and user-centric approaches. It can be accommodated to different operational conditions, regulations, and climates. Potential challenges and opportunities are also discussed, such as the present issues in the building’s balancing boundary, electric vehicle integration, and smart readiness indicators.

Funder

European Commission

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference81 articles.

1. 2019 Global Status Report for Buildings and Construction,2019

2. About the Sustainable Development Goals,2018

3. Energy Performance of Buildings Directive,2021

4. EU Countries’ Nearly Zero-Energy Buildings National Plans,2020

5. A Common Definition for Zero Energy Buildings;Torcellini,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3