Improving the Performance of Controllers for Wind Turbines on Semi-Submersible Offshore Platforms: Fuzzy Supervisor Control

Author:

Zambrana Pablo,Fernandez-Quijano Javier,Fernandez-Lozano J. JesusORCID,Rubio Pedro M. Mayorga,Garcia-Cerezo Alfonso J.

Abstract

The use of sea wind energy is restricted by the limited availability of suitable sites in shallow waters. To overcome this challenge, wind turbines located on offshore semi-submersible platforms appear as a valuable option, as they also allow the exploitation of other resources like wave energy or aquaculture. Nevertheless, the literature addressing this kind of design is scarce, and the interactions of the wind turbine and the platform movements increase the complexity of the control system with respect to the wind turbines with fixed foundations. Within this context, fuzzy control is a promising alternative to deal with these issues. However, while fuzzy controllers can be an alternative to substitute conventional PI control, the latter is a well-known, robust choice for operators. In this sense, fuzzy controllers can be designed to work in collaboration with PI controllers to ease their adoption. To this end, this paper addresses those gaps in the literature by presenting a methodology, its application to enhance controllers for large-scale wind turbines in semi-submersible offshore platforms and the results attained. The methodology is based on the implementation of an integrated simulation tool, together with the definition of three indexes that describe the performance of the control system in the overall platform behaviour regarding key aspects of its exploitation. Using it, an Anti-Wind-Up algorithm was designed to improve the behaviour of the conventional controller and is presented and evaluated along a fuzzy supervisor controller. In this kind of configuration, the fuzzy controller modifies the values of the PI controller. Finally, a comparison of the performance using the reference PI and the improved PI, in both cases together with a fuzzy supervisor controller modifying their values, is presented and discussed, contributing to extend the state of the art of controllers for large-scale wind turbines on offshore semi-submersible platforms.

Funder

Centro de Desarrollo Tecnológico Industrial (CDTI) and Corporación Tecnológica de Andalucía (CTA

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3