Abstract
Cybersecurity in Industrial Internet of Things (IIoT) has become critical as smart cities are becoming increasingly linked to industrial control systems (ICSs) used in critical infrastructure. Consequently, data-driven security systems for analyzing massive amounts of data generated by smart cities have become essential. A representative method for analyzing large-scale data is the game bot detection approach used in massively multiplayer online role-playing games. We reviewed the literature on bot detection methods to extend the anomaly detection approaches used in bot detection schemes to IIoT fields. Finally, we proposed a process wherein the data envelopment analysis (DEA) model was applied to identify features for efficiently detecting anomalous behavior in smart cities. Experimental results using random forest show that our extracted features based on a game bot can achieve an average F1-score of 0.99903 using 10-fold validation. We confirmed the applicability of the analyzed game-industry methodology to other fields and trained a random forest on the high-efficiency features identified by applying a DEA, obtaining an F1-score of 0.997 using the validation set approach. In this study, an anomaly detection method for analyzing massive smart city data based on a game industry methodology was presented and applied to the ICS dataset.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献