Adjustable Compliance Soft Sensor via an Elastically Inflatable Fluidic Dome

Author:

Zhang XingtianORCID,Kow Jun,Jones DominicORCID,de Boer GregORCID,Ghanbari AliORCID,Serjouei AhmadORCID,Culmer Pete,Alazmani Ali

Abstract

Soft sensors are essential for robotic systems to safely interact with humans and the environment. Although significant research has been carried out in the field of soft tactile sensing, most of these sensors are restricted to a predefined geometry and a fixed measurement range, hence limiting their application. This paper introduces a novel approach to soft sensing by proposing a soft load-sensing unit with an adjustable mechanical compliance achieved using an elastically inflatable fluidic dome. The sensor consists of a three-dimensional Hall-effect sensor, above which is a magnet whose movement is modulated by an intermediate elastomeric dome structure. Sensor configurations were designed and fabricated using three different silicone rubbers to cover ‘00–10’ and ‘20A’ durometer shore hardness scales. We demonstrated that the compliance of the sensor could be dynamically tuned by changing the internal pressure of the inflatable fluidic dome in all configurations. We performed finite element simulations to determine the reaction force of the sensor under load as well as the stresses within the internal structural behavior, which are not possible to capture experimentally. The proposed soft sensor has the potential to be readily adapted for use in various soft robotic applications of differing size, compliance range, and safety requirements.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research Progress on Flexible 3-D Force Sensors: A Review;IEEE Sensors Journal;2024-05-15

2. AI-Infused Soft Fluidic Tactile Sensing;2024 IEEE 7th International Conference on Soft Robotics (RoboSoft);2024-04-14

3. Hyperelastic constitutive model parameters identification using optical-based techniques and hybrid optimisation;International Journal of Mechanics and Materials in Design;2023-09-09

4. Stacked rigid and compliant dielectric structures for increasing force range in soft capacitive sensors;MRS Advances;2023-06-08

5. Precise Measurement of Grasping Force for Noncollaborative Infants;Advanced Materials Technologies;2023-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3