A Design and Implementation Using an Innovative Deep-Learning Algorithm for Garbage Segregation

Author:

Gunaseelan Jenilasree1ORCID,Sundaram Sujatha1,Mariyappan Bhuvaneswari2

Affiliation:

1. Department of Computer Applications, University College of Engineering, Anna University (BIT Campus), Trichy 620 024, Tamilnadu, India

2. Department of ECE, University College of Engineering, Anna University (BIT Campus), Trichy 620 024, Tamilnadu, India

Abstract

A startling shift in waste composition has been brought on by a dramatic change in lifestyle, the quick expansion of consumerism brought on by fierce competition among producers of consumer goods, and revolutionary advances in the packaging sector. The overflow or overspill of garbage from the bins causes poison to the soil, and the total obliteration of waste generated in the area or city is unknown. It is challenging to pinpoint with accuracy the specific sort of garbage waste; predictive image classification is lagging, and the existing approach takes longer to identify the specific garbage. To overcome this problem, image classification is carried out using a modified ResNeXt model. By adding a new block known as the “horizontal and vertical block,” the proposed ResNeXt architecture expands on the ResNet architecture. Each parallel branch of the block has its own unique collection of convolutional layers. Before moving on to the next layer, these branches are concatenated together. The block’s main goal is to expand the network’s capacity without considerably raising the number of parameters. ResNeXt is able to capture a wider variety of features in the input image by using parallel branches with various filter sizes, which improves performance on image classification. Some extra dense and dropout layers have been added to the standard ResNeXt model to improve performance. In order to increase the effectiveness of the network connections and decrease the total size of the model, the model is pruned to make it smaller. The overall architecture is trained and tested using garbage images. The convolution neural Network is connected with a modified ResNeXt that is trained using images of metal, trash, and biodegradable, and ResNet 50 is trained using images of non-biodegradable, glass, and hazardous images in a parallel way. An input image is fed to the architecture, and the image classification is achieved simultaneously to identify the exact garbage within a short time with an accuracy of 98%. The achieved results of the suggested method are demonstrated to be superior to those of the deep learning models already in use when compared to a variety of existing deep learning models. The proposed model is implemented into the hardware by designing a three-component smart bin system. It has three separate bins; it collects biodegradable, non-biodegradable, and hazardous waste separately. The smart bin has an ultrasonic sensor to detect the level of the bin, a poisonous gas sensor, a stepper motor to open the lid of the bin, a solar panel for battery storage, a Raspberry Pi camera, and a Raspberry Pi board. The levels of the bin are maintained in a centralized system for future analysis processes. The architecture used in the proposed smart bin properly disposes of the mixed garbage waste in an eco-friendly manner and recovers as much wealth as possible. It also reduces manpower, saves time, ensures proper collection of garbage from the bins, and helps attain a clean environment. The model boosts performance to predict waste generation and classify it with an increased 98.9% accuracy, which is more than the existing system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference49 articles.

1. Survey on identification and classification of waste for efficient disposal and recycling;Prasanna;Int. J. Eng. Technol.,2018

2. Automatic Waste Segregation and Management;Agarwal;Int. J. Eng. Res. Technol. (IJERT),2020

3. Devi, R.S., Vijaykumar, V.R., and Muthumeena, M. (2018). Waste Segregation using Deep Learning Algorithm. Int. J. Innov. Technol. Explor. Eng., 8.

4. Wang, C.-Y., Yeh, I.-H., and Liao, H.-Y.M. (2021). You only learn one representation: Unified network for multiple tasks. arXiv.

5. Redmon, J., and Farhadi, A. (2022, July 02). YOLOv3: An Incremental Improvement. Available online: https://pjreddie.com/yolo/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3