DLSMR: Deep Learning-Based Secure Multicast Routing Protocol against Wormhole Attack in Flying Ad Hoc Networks with Cell-Free Massive Multiple-Input Multiple-Output

Author:

Pramitarini Yushintia1ORCID,Perdana Ridho Hendra Yoga1ORCID,Shim Kyusung2ORCID,An Beongku3ORCID

Affiliation:

1. Departement of Software and Communications Engineering in Graduate School, Hongik University, Sejong City 30016, Republic of Korea

2. School of Computer Engineering & Applied Mathematics, Hankyong National University, Anseong City 17579, Republic of Korea

3. Departement of Software and Communications Engineering, Hongik University, Sejong City 30016, Republic of Korea

Abstract

The network area is extended from ground to air. In order to efficiently manage various kinds of nodes, new network paradigms are needed such as cell-free massive multiple-input multiple-output (CF-mMIMO). Additionally, security is also considered as one of the important quality-of-services (QoS) parameters in future networks. Thus, in this paper, we propose a novel deep learning-based secure multicast routing protocol (DLSMR) in flying ad hoc networks (FANETs) with cell-free massive MIMO (CF-mMIMO). We consider the problem of wormhole attacks in the multicast routing process. To tackle this problem, we propose the DLSMR protocol, which utilizes a deep learning (DL) approach to predict the secure and unsecured route based on node ID, distance, destination sequence, hop count, and energy to avoid wormhole attacks. This work also addresses key concerns in FANETs such as security, scalability, and stability. The main contributions of this paper are as follows: (1) We propose a deep learning-based secure multicast routing protocol (DLSMR) to establish a high-stability multicast tree and improve security performance against wormhole attacks. In more detail, the DLSMR protocol predicts whether the route is secure based on network information such as node ID, distance, destination sequence, hop count, and remaining energy or not. (2) To improve the node connectivity and manage multicast members, we propose a top-down particle swarm optimization-based clustering (TD-PSO) protocol to maximize the cost function considering node degree, cosine similarity, cosine distance, and cluster head energy to guarantee convergence to the global optima. Thus, the TD-PSO protocol provides more strong connectivity. (3) Performance evaluations verify the proposed routing protocol establishes a secure route by avoiding wormhole attacks as well as by providing strong connectivity. The TD-PSO clustering supports connectivity to enhance network performance. In addition, we exploit the impact of the mobility model on the network metrics such as packet delivery ratio, routing delay, control overhead, packet loss ratio, and number of packet losses.

Funder

Korea government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electronic Driving License-based for Secure Sharing Vehicles in Wireless IoT Networks;INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3