Mechanomyographic Analysis for Muscle Activity Assessment during a Load-Lifting Task

Author:

Correa Matthieu123ORCID,Projetti Maxime3,Siegler Isabelle A.12ORCID,Vignais Nicolas12ORCID

Affiliation:

1. Laboratoire CIAMS (Complexité, Innovation, Activités Motrices et Sportives), Université Paris-Saclay, CEDEX, 91405 Orsay, France

2. Laboratoire CIAMS (Complexité, Innovation, Activités Motrices et Sportives), Université d’Orléans, 45067 Orléans, France

3. Moten Technologies, 92800 Puteaux, France

Abstract

The purpose of this study was to compare electromyographic (EMG) with mechanomyographic (MMG) recordings during isometric conditions, and during a simulated load-lifting task. Twenty-two males (age: 25.5 ± 5.3 years) first performed maximal voluntary contractions (MVC) and submaximal isometric contractions of upper limb muscles at 25%, 50% and 75% MVC. Participants then executed repetitions of a functional activity simulating a load-lifting task above shoulder level, at 25%, 50% and 75% of their maximum activity (based on MVC). The low-frequency part of the accelerometer signal (<5 Hz) was used to segment the six phases of the motion. EMG and MMG were both recorded during the entire experimental procedure. Root mean square (RMS) and mean power frequency (MPF) were selected as signal extraction features. During isometric contractions, EMG and MMG exhibited similar repeatability scores. They also shared similar RMS vs. force relationship, with RMS increasing to 75% MVC and plateauing to 100%. MPF decreased with increasing force to 75% MVC. In dynamic condition, RMSMMG exhibited higher sensitivity to changes in load than RMSEMG. These results confirm the feasibility of MMG measurements to be used during functional activities outside the laboratory. It opens new perspectives for future applications in sports science, ergonomics and human–machine interface conception.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3