Self-Supervised Transformers for Unsupervised SAR Complex Interference Detection Using Canny Edge Detector

Author:

Feng Yugang123ORCID,Han Bing1234,Wang Xiaochen124,Shen Jiayuan123,Guan Xin124,Ding Hao124

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China

4. Key Laboratory of Target Cognition and Application Technology, Chinese Academy of Sciences, Beijing 100094, China

Abstract

As the electromagnetic environment becomes increasingly complex, a synthetic aperture radar (SAR) system with wideband active transmission and reception is vulnerable to interference from devices at the same frequency. SAR interference detection using the transform domain has become a research hotspot in recent years. However, existing transform domain interference detection methods exhibit unsatisfactory performance in complex interference environments. Moreover, most of them rely on label information, while existing publicly available interference datasets are limited. To solve these problems, this paper proposes an SAR unsupervised interference detection model that combines Canny edge detection with vision transformer (CEVIT). Using a time–frequency spectrogram as input, CEVIT realizes interference detection in complex interference environments with multi-interference and multiple types of interference by means of a feature extraction module and a detection head module. To validate the performance of the proposed model, experiments are conducted on airborne SAR interference simulation data and Sentinel-1 real interference data. The experimental results show that, compared with the other object detection models, CEVIT has the best interference detection performance in a complex interference environment, and the key evaluation indexes (e.g., Recall and F1-score) are improved by nearly 20%. The detection results on the real interfered echo data have a Recall that reaches 0.8722 and an F1-score that reaches 0.9115, which are much better than those of the compared methods, and the results also indicate that the proposed model achieves good detection performance with a fast detection speed in complex interference environments, which has certain practical application value in the interference detection problem of the SAR system.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Reference37 articles.

1. Review of synthetic aperture radar interference suppression;Yan;J. Radars,2020

2. Radio frequency interference detection and localization in Sentinel-1 images;Leng;IEEE Trans. Geosci. Remote Sens.,2021

3. Ma, B., Yang, H., and Yang, J. (2022). Ship Detection in Spaceborne SAR Images under Radio Interference Environment Based on CFAR. Electronics, 11.

4. WBI suppression for SAR using iterative adaptive method;Yang;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2015

5. Narrow-band interference suppression via RPCA-based signal separation in time– frequency domain;Su;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3