Estimation of Earth Rotation Parameters Based on BDS-3 and Discontinuous VLBI Observations

Author:

Wang Chenxiang1,Sang Jizhang1,Li Xingxing1,Zhang Pengfei1

Affiliation:

1. School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan 430079, China

Abstract

Earth rotation parameters (ERPs) are fundamental to geodetic and astronomical studies. With its high measurement accuracy and stability, the Very Long Baseline Interferometry (VLBI) plays an irreplaceable role in estimating the ERPs and maintaining the earth reference frame. However, the imperfect global station distribution, observation discontinuity, and vast cost of the VLBI make the GNSS a more attractive technique. In 2020, the third generation of the BeiDou Navigation System (BDS), namely BDS-3, was constructed completely. In this study, we conducted a series of experiments to estimate Earth’s rotation parameters based on the continuous BDS-3 observation data, the discontinuous VLBI observation data, and the combined BDS-3 and discontinuous VLBI observation data. We used two methods, namely the weighted averaging method and the normal equation combination method, to obtain ERP combination solutions. The results are compared with the International Earth Rotation and Reference Systems Service (IERS) EOP 20C04 at 00:00:00 UTC. Final results show that (a) the estimation accuracy becomes stable when the number of BDS-3 tracking stations is more than 40. At the same time, both the number of stations and the volume of polyhedrons formed by the observing stations affect the accuracy of the ERPs estimated by the BDS-3 or VLBI. (b) Results have also shown that the inclusion of the BDS-3 IGSO and GEO satellites contributes little to the ERP estimation. (c) For the BDS-3-only MEO satellites solution, the root mean square (RMS) was 113.2 µas, 102.8 µas, and 13.1 µs/day for X-pole coordinate, Y-pole coordinate, and length of day (LOD), respectively. For the VLBI solution, the RMSs of the X-pole, Y-pole, and LOD were 100.4 µas for the X-pole, 94.2 µas for the Y-pole, and 14.1 µs/day. The RMS was 82.6 µas, 70.3 µas, and 10.5 µs/day for the combined X-pole, Y-pole, and LOD using the weighted averaging method. It was 78.2 µas, 62.6 µas, and 8.6 µs/day when the normal equation combination method was applied. This demonstrates that by taking advantage of the BDS-3 and VLBI technique combinations, accuracy in estimating the ERPs can be improved over that using either of them, in addition to enhanced stability and reliability.

Funder

Special Fund of Hubei Luojia Laboratory

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3